Error-Bounding in Level-Index Computer Arithmetic

نویسنده

  • D. W. Lozier
چکیده

This paper proposes the use of level-index (LI) and symmetric level-index (SLI) computer arithmetic for practical computation with error bounds. Comparisons are made with oating-point and several advantages are identiied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Bounding Estimation in Modified Nlms Algorithm

Modified Normalized Least Mean Square (MNLMS) algorithm, which is a sign form of NLMS based on set-membership (SM) theory in the class of optimal bounding ellipsoid (OBE) algorithms, requires a priori knowledge of error bounds that is unknown in most applications. In a special but popular case of measurement noise, a simple algorithm has been proposed. With some simulation examples the performa...

متن کامل

Precision Arithmetic: A New Floating-Point Arithmetic

A new deterministic floating-point arithmetic called precision arithmetic is developed to track precision for arithmetic calculations. It uses a novel rounding scheme to avoid the excessive rounding error propagation of conventional floating-point arithmetic. Unlike interval arithmetic, its uncertainty tracking is based on statistics and the central limit theorem, with a much tighter bounding r...

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

A New Uncertainty-Bearing Floating-Point Arithmetic

A new deterministic floating-point arithmetic called precision arithmetic is developed to track precision for arithmetic calculations. It uses a novel rounding scheme to avoid the excessive rounding error propagation of conventional floating-point arithmetic. Unlike interval arithmetic, its uncertainty tracking is based on statistics and the central limit theorem, with a much tighter bounding r...

متن کامل

Towards a Fast and Reliable Software Implementation of SLI-FLP Hybrid Computer Arithmetic

In this paper we describe a C++ implementation of a hybrid system combining SLI (symmetric level-index) arithmetic and FLP (floating-point) arithmetic. The principal motivation for the work to be presented is to promote the use of SLI arithmetic as a practical framework for scientific computing. This hybrid arithmetic is essentially overflow and underflow free, and its implementation has shown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1966